Skip to content

From a pytorch model to a deep explainable model#

For a quick introduction to the Xpdeep APIs, this section demonstrates, on the Adult Income dataset, how to adapt a standard deep model's PyTorch code to transition to designing an explainable deep model.

We will review the key steps involved in designing a deep model, from architecture specification and training to generating explanations (for Xpdeep).

For each step in building a deep model, we provide:

  • Tabs labeled "SOTA and Xpdeep" for code that is identical for both the SOTA deep model and the Xpdeep explainable model.

  • Tabs labeled "Xpdeep" for code specific to the Xpdeep explainable model.

1. Project Setup#

Setup Api Key and URL#

from xpdeep import init

init(api_key="MY_API_KEY", api_url="MY_API_URL")

Create a Project#

from xpdeep import set_project
from xpdeep.project import Project

set_project(Project.create_or_get(name="Adult-Income Tutorial"))

2. Data preparation#

Read Raw Data#

import pandas as pd

file_path = "adult_income.csv"
data = pd.read_csv(file_path)
data = data.drop(columns=["fnlwgt", "education"])

Split Data#

from sklearn.model_selection import train_test_split

# Split the data into training and testing sets
train_data, test_data = train_test_split(data, test_size=0.2, random_state=42)

# Further split the training set into training and validation sets
train_data, val_data = train_test_split(train_data, test_size=0.25, random_state=42)

Conversion to Parquet Format#

import pyarrow as pa
import pyarrow.parquet as pq

# Convert to pyarrow Table format
train_table = pa.Table.from_pandas(train_data, preserve_index=False)
val_table = pa.Table.from_pandas(val_data, preserve_index=False)
test_table = pa.Table.from_pandas(test_data, preserve_index=False)

# Save each split as ".parquet" file
pq.write_table(train_table, "train.parquet")
pq.write_table(val_table, "val.parquet")
pq.write_table(test_table, "test.parquet")

Upload#

from xpdeep.dataset.upload import upload

directory = upload(
    directory_name="adult_income_uploaded",
    train_set_path="train.parquet",
    test_set_path="test.parquet",
    val_set_path="val.parquet",
)

Preprocess Data#

from sklearn.preprocessing import OneHotEncoder, StandardScaler
import numpy as np

# Fit preprocessors
numerical_features = ["age", "educational-num", "capital-gain", "capital-loss", "hours-per-week"]
categorical_features = ["workclass", "marital-status", "occupation", "relationship", "race", "gender", "native-country"]
target_feature = "income"

numerical_features_standard_scaler = StandardScaler().fit(train_data[numerical_features])

categorical_features_encoders = {}
for category in categorical_features:
    categorical_features_encoders[category] = OneHotEncoder(sparse_output=False).fit(train_data[[category]])

target_feature_encoder = OneHotEncoder(sparse_output=False).fit(train_data[[target_feature]])

# Transform data
x_train = np.concatenate(
    [numerical_features_standard_scaler.transform(train_data[numerical_features])] 
    + 
    [categorical_features_encoders[feature].transform(train_data[[feature]]) for feature in categorical_features], 
    axis=1
)
y_train = target_feature_encoder.transform(train_data[[target_feature]])

x_test = np.concatenate(
    [numerical_features_standard_scaler.transform(test_data[numerical_features])] 
    + 
    [categorical_features_encoders[feature].transform(test_data[[feature]]) for feature in categorical_features], 
    axis=1
)
y_test = target_feature_encoder.transform(test_data[[target_feature]])

x_val = np.concatenate(
    [numerical_features_standard_scaler.transform(val_data[numerical_features])] 
    + 
    [categorical_features_encoders[feature].transform(val_data[[feature]]) for feature in categorical_features], 
    axis=1
)
y_val = target_feature_encoder.transform(val_data[[target_feature]])


# input and output sizes
input_size = x_train.shape[1]
target_size = y_train.shape[1]
from xpdeep.dataset.parquet_dataset import FittedParquetDataset, ParquetDataset
from xpdeep.dataset.schema.feature.feature import NumericalFeature
from xpdeep.dataset.schema.preprocessor import SklearnPreprocessor
from sklearn.preprocessing import StandardScaler


# 1/ Create Analyzed Parquet on Train Dataset

train_dataset = ParquetDataset(
    split_name="train",
    identifier_name="my_local_dataset",
    path=directory["train_set_path"],
)

analyzed_train_dataset = train_dataset.analyze(target_names=["income"])

preprocessor = SklearnPreprocessor(preprocess_function=StandardScaler())
analyzed_train_dataset.analyzed_schema["educational-num"] = NumericalFeature(
    name="educational-num", is_target=False, preprocessor=preprocessor
)
print(analyzed_train_dataset.analyzed_schema)

#2/ Create Fitted Parquet Datasets
fit_train_dataset = analyzed_train_dataset.fit()

fit_test_dataset = FittedParquetDataset(
    split_name="test",
    identifier_name="my_local_dataset",
    path=directory["test_set_path"],
    fitted_schema=fit_train_dataset.fitted_schema,
)

fit_val_dataset = FittedParquetDataset(
    split_name="validation",
    identifier_name="my_local_dataset",
    path=directory["val_set_path"],
    fitted_schema=fit_train_dataset.fitted_schema,
)


# input and output sizes
input_size = fit_train_dataset.fitted_schema.input_size[1]
target_size = fit_train_dataset.fitted_schema.target_size[1]

3. Model Construction#

Architecture Specification#

import torch

layers = [
    torch.nn.Linear(input_size, 128),
    torch.nn.ReLU(),        
    torch.nn.Linear(128, 64),
    torch.nn.ReLU(),
    torch.nn.Linear(64, target_size),
    torch.nn.Softmax(dim=1)
]
import torch
from torch.nn import Sequential

feature_extractor = Sequential(
    torch.nn.Linear(input_size, 128),
    torch.nn.ReLU(),
    torch.nn.Linear(128, 64),
    torch.nn.ReLU(),
)

task_learner = Sequential(
    torch.nn.Linear(64, target_size),
    torch.nn.Softmax(dim=1)
)

Model Instantiation#

from torch.nn import Sequential

sota_model = Sequential(*layers)
from xpdeep.model.model_builder import ModelDecisionGraphParameters
from xpdeep.model.xpdeep_model import XpdeepModel

# Model specifications and hyperparameters.
explanation_architecture = ModelDecisionGraphParameters(
    graph_depth=3,
    target_homogeneity_pruning_threshold=0.8,
    population_pruning_threshold=0.15,
    prune_step=5,
    target_homogeneity_weight=1.0,
    discrimination_weight=0.1,
    balancing_weight=0.05,
)


# XPDEEP Model Architecture
xpdeep_model = XpdeepModel.from_torch(
    fitted_schema=fit_train_dataset.fitted_schema,
    feature_extraction=feature_extractor,
    task_learner=task_learner,
    decision_graph_parameters=explanation_architecture,
)

4. Training#

Training Specification#

from torch import nn

loss_fn = nn.BCELoss()
optimizer = torch.optim.AdamW(sota_model.parameters(), lr=1e-3)
batch_size = 128
epochs = 20
from xpdeep.trainer.callbacks import EarlyStopping, Scheduler, ModelCheckpoint
from functools import partial
from xpdeep.metric import DictMetrics, TorchGlobalMetric, TorchLeafMetric
from torch.optim.lr_scheduler import ReduceLROnPlateau
from xpdeep.trainer.trainer import Trainer
from xpdeep.model.zoo.cross_entropy_loss_from_proba import CrossEntropyLossFromProbabilities
from torchmetrics.classification import MulticlassAccuracy, MulticlassConfusionMatrix

# Metrics to monitor the training.
metrics = DictMetrics(
    global_multi_class_accuracy=TorchGlobalMetric(
        partial(MulticlassAccuracy, num_classes=2, average="micro"), target_as_indexes=True
    ),
    leaf_multi_class_accuracy=TorchLeafMetric(
        partial(MulticlassAccuracy, num_classes=2, average="micro"), target_as_indexes=True
    ),
    leaf_confusion_matrix=TorchLeafMetric(
        partial(MulticlassConfusionMatrix, num_classes=2, normalize="all"), target_as_indexes=True
    ),
)

callbacks = [
    EarlyStopping(monitoring_metric="Total loss", mode="minimize", patience=5),
    Scheduler(pre_scheduler=partial(ReduceLROnPlateau), step_method="epoch", monitoring_metric="Total loss"),
    ModelCheckpoint(monitoring_metric="Total loss", mode="minimize"),
]

# Optimizer is a partial object as pytorch needs to give the model as optimizer parameter.
optimizer = partial(torch.optim.AdamW, lr=0.001, foreach=False, fused=False)

trainer = Trainer(
    loss=CrossEntropyLossFromProbabilities(reduction="none"),
    optimizer=optimizer,
    callbacks=callbacks,
    start_epoch=0,
    max_epochs=10,
    metrics=metrics,
)

Model Training#

from sklearn.metrics import accuracy_score
import torch

device = "cpu"

def train(X_train, y_train, model, loss_fn, optimizer):
    size = len(X_train)
    model.train()
    total_loss = 0

    for batch in range(size//batch_size):

        X_batch, y_batch = torch.tensor(X_train[batch*batch_size:(batch+1)*batch_size,:], dtype=torch.float32).to(device), torch.tensor(y_train[batch*batch_size:(batch+1)*batch_size,:], dtype=torch.float32).to(device)

        # Compute prediction error
        pred = model(X_batch)
        loss = loss_fn(pred, y_batch)

        # Backpropagation
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        total_loss += loss.item()

    average_loss = total_loss/(size//batch_size)
    return average_loss


def eval_(X_test, y_test, model, loss_fn):
    size = len(X_test)
    model.eval()
    with torch.no_grad():
        X_test, y_test = torch.tensor(X_test, dtype=torch.float32).to(device), torch.tensor(y_test, dtype=torch.float32).to(device)

        pred = model(X_test)
        test_loss = loss_fn(pred, y_test).item()

        rounded_pred = pred.round()

        correct = (rounded_pred == y_test)[:,0].type(torch.float).sum().item()
        correct /= size

        accuracy = accuracy_score(rounded_pred, y_test)

        return rounded_pred, test_loss, accuracy

for t in range(epochs):

    print(f"\nEpoch {t+1}\n-------------------------------")


    training_loss = train(
        x_train, 
        y_train, 
        sota_model, 
        loss_fn, 
        optimizer
    )

    _, val_loss, _ = eval_(
        x_val, 
        y_val, 
        sota_model, 
        loss_fn
    )

    print(f"Training Loss: {training_loss}\nValidation Loss: {val_loss}")

_, _, accuracy_on_train = eval_(x_train, y_train, sota_model, loss_fn)
_, _, accuracy_on_validation = eval_(x_val, y_val, sota_model, loss_fn)
_, _, accuracy_on_test = eval_(x_test, y_test, sota_model, loss_fn)

print(f"\nAccuracies: "
      f"\nAccuracy on train set      : {accuracy_on_train}"
      f"\nAccuracy on validation set : {accuracy_on_validation}"
      f"\nAccuracy on test set       : {accuracy_on_test}"
      )
trained_model = trainer.train(
    model=xpdeep_model,
    train_set=fit_train_dataset,
    validation_set=fit_val_dataset,
    batch_size=128,
)

5. Explanation Generation#

from xpdeep.explain.explainer import Explainer
from xpdeep.explain.quality_metrics import Infidelity, Sensitivity
from xpdeep.explain.statistic import DictStats, DistributionStat

statistics = DictStats(
    distribution_target=DistributionStat(on="target"), 
    distribution_prediction=DistributionStat(on="prediction")
)
quality_metrics = [Sensitivity(), Infidelity()]

explainer = Explainer(
    description_representativeness=1000, 
    quality_metrics=quality_metrics, 
    metrics=metrics, 
    statistics=statistics
)

model_explanations = explainer.global_explain(
    trained_model,
    train_set=fit_train_dataset,
    test_set=fit_test_dataset,
    validation_set=fit_val_dataset,
)
print(model_explanations.visualisation_link)