filter
Module defining the filter object.
Classes:
| Name | Description |
|---|---|
Filter |
Filter class, used to filter a dataset for causal explanation on a subset. |
Filter(name: str, fitted_parquet_dataset: FittedParquetDataset, criteria: Sequence[NumericalCriterion | CategoricalCriterion | MultivariateCriterion | TimeseriesBoxCriterion] = (), row_indexes: Sequence[int] = (), *, min_index: int | None = None, max_index: int | None = None)
#
Filter class, used to filter a dataset for causal explanation on a subset.
"dataset", "min_index", "max_index" attributes should never be updated once the instance is created. It is still safe to update other attributes.
Initialize the filter object.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
str
|
The filter name. |
required |
|
FittedParquetDataset
|
The dataset to filter will be applied to. Do not update after Object initialization. |
required |
|
(Sequence[NumericalCriterion | CategoricalCriterion | MultivariateCriterion | TimeseriesBoxCriterion],)
|
|
()
|
|
An optional list of filter criteria to filter by feature. |
required | |
|
Sequence[int]
|
An optional list of row indexes to filter by sample. |
().
|
|
int | None
|
Filter rows with lower indexes than min_index. Do not update after Object initialization. |
None.
|
|
int | None
|
Filter rows with greater indexes than max_index. Do not update after Object initialization. |
None.
|
Methods:
| Name | Description |
|---|---|
__setattr__ |
Set attribute. |
add_criteria |
Add many criteria. |
save |
Save the Filter remotely. |
load_all |
List all filters of the current project. |
get_by_id |
Get Filter by its ID. |
get_by_name |
Get Filter by its name. |
delete |
Delete the current object remotely. |
__len__ |
Get filter's result size. |
Attributes:
| Name | Type | Description |
|---|---|---|
name |
|
|
criteria |
|
|
row_indexes |
|
|
dataset |
|
|
min_index |
|
|
max_index |
|
|
id |
str
|
Get id. |
Source code in src/xpdeep/filtering/filter.py
name = name
#
criteria = list(criteria)
#
row_indexes = row_indexes
#
dataset = fitted_parquet_dataset
#
min_index = min_index
#
max_index = max_index
#
id: str
#
Get id.
__setattr__(attr: str, value: object) -> None
#
Set attribute.
Source code in src/xpdeep/filtering/filter.py
add_criteria(*args: NumericalCriterion | CategoricalCriterion | MultivariateCriterion | TimeseriesBoxCriterion) -> None
#
save(*, force: bool = False) -> Filter
#
Save the Filter remotely.
Source code in src/xpdeep/filtering/filter.py
load_all() -> list[Filter]
#
List all filters of the current project.
Source code in src/xpdeep/filtering/filter.py
get_by_id(filter_id: str) -> Filter
#
Get Filter by its ID.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
str
|
The ID of the Filter to retrieve. |
required |
Source code in src/xpdeep/filtering/filter.py
get_by_name(filter_name: str) -> Filter
#
Get Filter by its name.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
|
str
|
The name of the Filter to retrieve. |
required |
Source code in src/xpdeep/filtering/filter.py
delete() -> None
#
Delete the current object remotely.
Source code in src/xpdeep/filtering/filter.py
__len__() -> int
#
Get filter's result size.
Ignores row_indexes.