Skip to content

quality_metrics

Define the available quality metrics to validate the explanation quality.

Classes:

Name Description
QualityMetrics

Quality metrics object.

Sensitivity

Sensitivity object.

Infidelity

Infidelity object.

QualityMetrics #

Quality metrics object.

Parameters:

Name Type Description Default

name #

str
required

number_of_perturbations #

None | Unset | int
<xpdeep_api_client.types.Unset object at 0x7f35293a8380>

Attributes:

Name Type Description
additional_properties dict[str, Any]

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Methods:

Name Description
to_model

Convert to ExplanationConfigQualityMetric instance.

to_model() -> ExplanationConfigQualityMetric #

Convert to ExplanationConfigQualityMetric instance.

Source code in src/xpdeep/explain/quality_metrics.py
@abstractmethod
def to_model(self) -> ExplanationConfigQualityMetric:
    """Convert to ExplanationConfigQualityMetric instance."""
    raise NotImplementedError

Sensitivity #

Sensitivity object.

Parameters:

Name Type Description Default

name #

str

The metric name.

'sensitivity'

number_of_perturbations #

int

The number of perturbations. The higher, the more accurate, byt computationally expensive.

10

Attributes:

Name Type Description
additional_properties dict[str, Any]

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Methods:

Name Description
to_model

Convert to ExplanationConfigQualityMetric instance.

name: str = 'sensitivity' #

number_of_perturbations: int = 10 #

to_model() -> ExplanationConfigQualityMetric #

Convert to ExplanationConfigQualityMetric instance.

Source code in src/xpdeep/explain/quality_metrics.py
def to_model(self) -> ExplanationConfigQualityMetric:
    """Convert to ExplanationConfigQualityMetric instance."""
    return ExplanationConfigQualityMetric(
        name=self.name,
        number_of_perturbations=self.number_of_perturbations,
    )

Infidelity #

Infidelity object.

Parameters:

Name Type Description Default

name #

str

The metric name, default infidelity.

'infidelity'

number_of_perturbations #

int

The number of perturbations. The higher, the more accurate, byt computationally expensive.

10

Attributes:

Name Type Description
additional_properties dict[str, Any]

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object's (key, value) pairs dict(iterable) -> new dictionary initialized as if via: d = {} for k, v in iterable: d[k] = v dict(**kwargs) -> new dictionary initialized with the name=value pairs in the keyword argument list. For example: dict(one=1, two=2)

Methods:

Name Description
to_model

Convert to ExplanationConfigQualityMetric instance.

name: str = 'infidelity' #

number_of_perturbations: int = 10 #

to_model() -> ExplanationConfigQualityMetric #

Convert to ExplanationConfigQualityMetric instance.

Source code in src/xpdeep/explain/quality_metrics.py
def to_model(self) -> ExplanationConfigQualityMetric:
    """Convert to ExplanationConfigQualityMetric instance."""
    return ExplanationConfigQualityMetric(
        name=self.name,
        number_of_perturbations=self.number_of_perturbations,
    )