callbacks
Callbacks for training.
Classes:
| Name | Description | 
|---|---|
EarlyStopping | 
            
               Initialize the EarlyStopping callback.  | 
          
Scheduler | 
            
               Initialize a scheduler object to encapsulate different torch schedulers.  | 
          
ModelCheckpoint | 
            
               Model checkpoint initialization.  | 
          
Attributes:
| Name | Type | Description | 
|---|---|---|
Callback | 
            
               | 
          
            Callback = EarlyStopping | Scheduler | ModelCheckpoint
#
    
            EarlyStopping
#
    Initialize the EarlyStopping callback.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  str
             | 
            
               The metric name to use for early stopping, for instance, "Total loss".  | 
            required | 
                               | 
            
                  Literal['maximize', 'minimize']
             | 
            
               Whether to "maximize" or "minimize" the provided metric.  | 
            required | 
                               | 
            
                  int
             | 
            
               Number of epochs to wait with no improvement of the monitoring value.  | 
            
                  3.
             | 
          
                               | 
            
                  float
             | 
            
               Minimum delta between two monitoring values to consider an improvement.  | 
            
                  0.
             | 
          
Attributes:
| Name | Type | Description | 
|---|---|---|
callback | 
            
                  EarlyStoppingRequestBodyCallback
             | 
            
               | 
          
Attributes:
| Name | Type | Description | 
|---|---|---|
monitoring_metric | 
            
                  str
             | 
            
               | 
          
callback | 
            
                  EarlyStoppingRequestBodyCallback
             | 
            
               | 
          
mode | 
            
                  Literal['maximize', 'minimize']
             | 
            
               | 
          
patience | 
            
                  int
             | 
            
               | 
          
min_delta | 
            
                  float
             | 
            
               | 
          
            monitoring_metric: str
#
    
            callback: EarlyStoppingRequestBodyCallback = field(default=EarlyStoppingRequestBodyCallback.EARLY_STOPPING, init=False)
#
    
            mode: Literal['maximize', 'minimize'] = field(validator=lambda self, attribute, value: value in [str(mode_) for mode_ in EarlyStoppingRequestBodyMode])
#
    
            patience: int = 3
#
    
            min_delta: float = 0.0
#
    
            Scheduler
#
    Initialize a scheduler object to encapsulate different torch schedulers.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  partial[LRScheduler]
             | 
            
               Based torch lr scheduler to be instantiated. Should not contain the optimizer as xpdeep use the trainer's optimizer for the scheduler internally.  | 
            required | 
                               | 
            
                  Literal['batch', 'epoch']
             | 
            
               "epoch" or "batch".  | 
            required | 
                               | 
            
                  str
             | 
            
               Monitoring metric required for the step method, for instance "Total loss".  | 
            required | 
Attributes:
| Name | Type | Description | 
|---|---|---|
callback | 
            
                  SchedulerRequestBodyCallback
             | 
            
               | 
          
Attributes:
| Name | Type | Description | 
|---|---|---|
callback | 
            
                  SchedulerRequestBodyCallback
             | 
            
               | 
          
pre_scheduler | 
            
                  partial[LRScheduler | ReduceLROnPlateau]
             | 
            
               | 
          
monitoring_metric | 
            
                  str
             | 
            
               | 
          
step_method | 
            
                  Literal['batch', 'epoch']
             | 
            
               | 
          
            callback: SchedulerRequestBodyCallback = field(default=SchedulerRequestBodyCallback.SCHEDULER, init=False)
#
    
            pre_scheduler: partial[LRScheduler | ReduceLROnPlateau]
#
    
            monitoring_metric: str
#
    
            step_method: Literal['batch', 'epoch'] = field(validator=lambda self, attribute, value: value in [str(step_method_) for step_method_ in SchedulerRequestBodyStepmethod])
#
    
            ModelCheckpoint
#
    Model checkpoint initialization.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  str
             | 
            
               Monitoring metric required for the step method, for instance "Total loss".  | 
            required | 
                               | 
            
                  int
             | 
            
               How often to save the model. If None, only save the best checkpoint.  | 
            
                  1
             | 
          
                               | 
            
               Whether to "maximize" or "minimize" the provided metric.  | 
            required | 
Attributes:
| Name | Type | Description | 
|---|---|---|
callback | 
            
                  ModelCheckpointRequestBodyCallback
             | 
            
               | 
          
Attributes:
| Name | Type | Description | 
|---|---|---|
monitoring_metric | 
            
                  str
             | 
            
               | 
          
callback | 
            
                  ModelCheckpointRequestBodyCallback
             | 
            
               | 
          
mode | 
            
                  Literal['maximize', 'minimize']
             | 
            
               | 
          
save_every_epoch | 
            
                  int
             | 
            
               |