filter
Module defining the filter object.
Classes:
| Name | Description | 
|---|---|
Filter | 
            
               Filter class, used to filter a dataset for causal explanation on a subset.  | 
          
              Filter(name: str, fitted_parquet_dataset: FittedParquetDataset, criteria: list[NumericalCriterion | CategoricalCriterion | MultivariateCriterion | TimeseriesBoxCriterion] | None = None, row_indexes: list[int] | None = None)
#
    Filter class, used to filter a dataset for causal explanation on a subset.
Initialize the filter object.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  str
             | 
            
               The filter name.  | 
            required | 
                               | 
            
                  FittedParquetDataset
             | 
            
               The dataset to filter will be applied to.  | 
            required | 
                               | 
            
                  list[NumericalCriterion | CategoricalCriterion] | None
             | 
            
               An optional list of filter criteria to filter by feature.  | 
            
                  None
             | 
          
                               | 
            
                  list[int] | None
             | 
            
               An optional list of row indexes to filter by sample.  | 
            
                  None.
             | 
          
Methods:
| Name | Description | 
|---|---|
add_criterion | 
              
                 Add criterion.  | 
            
add_criteria | 
              
                 Add many criteria.  | 
            
apply | 
              
                 Generate/update a remote filter.  | 
            
__len__ | 
              
                 Get filter's result size.  | 
            
Attributes:
| Name | Type | Description | 
|---|---|---|
name | 
            
               | 
          |
criteria | 
            
               | 
          |
row_indexes | 
            
               | 
          |
dataset | 
            
               | 
          |
id | 
            
                  str | None
             | 
            
               Get id.  | 
          
Source code in src/xpdeep/filtering/filter.py
                    
            name = name
#
    
            criteria = criteria if criteria is not None else []
#
    
            row_indexes = row_indexes
#
    
            dataset = fitted_parquet_dataset
#
    
            id: str | None
#
    Get id.
            add_criterion(criterion: NumericalCriterion | CategoricalCriterion) -> None
#
    
            add_criteria(*args: NumericalCriterion | CategoricalCriterion) -> None
#
    
            apply() -> None
#
    
            __len__() -> int
#
    Get filter's result size.