explainer
How to explain a trained model.
Modules:
| Name | Description | 
|---|---|
jobs | 
            
               Jobs utilities.  | 
          
Classes:
| Name | Description | 
|---|---|
Explainer | 
            
               Explain a XpdeepModel.  | 
          
            Explainer
#
    Explain a XpdeepModel.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  int
             | 
            
               A parameter governing the explanation quality, the greater, the better, but it will be slower to compute.  | 
            required | 
                               | 
            
                  list[QualityMetrics]
             | 
            
               A list of quality metrics to compute, like Sensitivity or Infidelity.  | 
            required | 
                               | 
            
                  int | None
             | 
            
               DTW parameter windows (proportion %)  | 
            
                  None
             | 
          
                               | 
            
                  DictMetrics | None
             | 
            
               A list of metrics to compute along with the explanation (F1 score etc.)  | 
            
                  None
             | 
          
                               | 
            
                  DictMetrics | None
             | 
            
               A list of statistics to compute along with the explanation (Variance on targets etc.)  | 
            
                  None
             | 
          
                               | 
            
                  int | None
             | 
            
               The batch size to use during explanation. Default to None.  | 
            
                  None
             | 
          
                               | 
            
                  int | None
             | 
            
               The seed to use during explanation. Default to None.  | 
            
                  None
             | 
          
Methods:
| Name | Description | 
|---|---|
local_explain | 
              
                 Create a causal explanation from trained model.  | 
            
global_explain | 
              
                 Compute model decision on a trained model.  | 
            
Attributes:
| Name | Type | Description | 
|---|---|---|
description_representativeness | 
            
                  int
             | 
            
               | 
          
quality_metrics | 
            
                  list[QualityMetrics]
             | 
            
               | 
          
window_size | 
            
                  int | None
             | 
            
               | 
          
metrics | 
            
                  DictMetrics | None
             | 
            
               | 
          
statistics | 
            
                  DictStats | None
             | 
            
               | 
          
batch_size | 
            
                  int | None
             | 
            
               | 
          
seed | 
            
                  int | None
             | 
            
               | 
          
            description_representativeness: int
#
    
            quality_metrics: list[QualityMetrics]
#
    
            window_size: int | None = None
#
    
            metrics: DictMetrics | None = None
#
    
            statistics: DictStats | None = None
#
    
            batch_size: int | None = None
#
    
            seed: int | None = None
#
    
            local_explain(trained_model: TrainedModelArtifact, train_set: FittedParquetDataset, dataset_filter: Filter, *, explanation_name: str | None = None, explanation_description: str | None = None) -> ExplanationArtifact
#
    Create a causal explanation from trained model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  TrainedModelArtifact
             | 
            
               A model trained via the trainer interface.  | 
            required | 
                               | 
            
                  FittedParquetDataset
             | 
            
               A dataset representing a train split.  | 
            required | 
                               | 
            
                  Filter
             | 
            
               A filter used to filter the dataset and get samples to explain.  | 
            required | 
                               | 
            
                  str | None
             | 
            
               The explanation name.  | 
            
                  None
             | 
          
                               | 
            
                  str | None
             | 
            
               The explanation description.  | 
            
                  None
             | 
          
Returns:
| Type | Description | 
|---|---|
                  ExplanationResultsModel
             | 
            
               The causal explanation results, containing the result as json.  | 
          
Source code in src/xpdeep/explain/explainer.py
              
            global_explain(trained_model: TrainedModelArtifact, train_set: FittedParquetDataset, test_set: FittedParquetDataset | None = None, validation_set: FittedParquetDataset | None = None) -> ExplanationArtifact
#
    Compute model decision on a trained model.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                               | 
            
                  TrainedModelArtifact
             | 
            
               A model trained via the trainer interface.  | 
            required | 
                               | 
            
                  FittedParquetDataset
             | 
            
               A dataset representing a train split.  | 
            required | 
                               | 
            
                  FittedParquetDataset | None
             | 
            
               A dataset representing a test split, used to optionally compute split statistics.  | 
            
                  None
             | 
          
                               | 
            
                  FittedParquetDataset | None
             | 
            
               A dataset representing a validation split, used to optionally compute split statistics.  | 
            
                  None
             | 
          
Returns:
| Type | Description | 
|---|---|
                  ExplanationResultsModel
             | 
            
               The model decision results, containing the result as json.  |