preprocessor
Feature preprocessor.
Classes:
Name | Description |
---|---|
Preprocessor |
Preprocessor class to preprocess the raw data. |
IdentityPreprocessor |
Identity Preprocessor class. |
SklearnPreprocessor |
Preprocessor class based on sklearn preprocessing classes. |
TorchPreprocessor |
Preprocessor class based on pytorch. |
Preprocessor
#
Preprocessor class to preprocess the raw data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
None indicates that the preprocessor was not fitted. Otherwise, it represents the feature size after being preprocessed, without the batch size. |
required |
Attributes:
Name | Type | Description |
---|---|---|
preprocessed_size |
tuple[int, ...] | None
|
|
preprocessed_size: tuple[int, ...] | None = None
#
IdentityPreprocessor
#
Identity Preprocessor class.
Methods:
Name | Description |
---|---|
from_exposed |
Unparse the serialized preprocessor to use it on client side. |
Attributes:
Name | Type | Description |
---|---|---|
as_exposed |
ExposedIdentityPreprocessor
|
Parse the preprocessor to send it to xpdeep server. |
SklearnPreprocessor
#
Preprocessor class based on sklearn preprocessing classes.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
TransformerMixin | ExposedPreprocessFunction
|
|
required |
Methods:
Name | Description |
---|---|
from_exposed |
Unparse the serialized preprocessor to use it on client side. |
transform |
Transform a feature raw value into its preprocessed value. |
inverse_transform |
Inverse transform a feature preprocessed value into its raw value. |
Attributes:
Name | Type | Description |
---|---|---|
preprocess_function |
TransformerMixin | ExposedPreprocessFunction
|
|
as_exposed |
ExposedNumpyPreprocessor
|
Parse the preprocessor to send it to xpdeep server. |
preprocess_function: TransformerMixin | ExposedPreprocessFunction
#
as_exposed: ExposedNumpyPreprocessor
#
Parse the preprocessor to send it to xpdeep server.
from_exposed(numpy_preprocessor: ExposedNumpyPreprocessor) -> Self
#
Unparse the serialized preprocessor to use it on client side.
Unparsing requires the adequate external modules, like scikit-learn
if it used it originally.
Source code in src/xpdeep/dataset/schema/preprocessor.py
transform(feature_raw_value: object) -> torch.Tensor
#
Transform a feature raw value into its preprocessed value.
Source code in src/xpdeep/dataset/schema/preprocessor.py
inverse_transform(preprocessed_value: torch.Tensor) -> object
#
Inverse transform a feature preprocessed value into its raw value.
Source code in src/xpdeep/dataset/schema/preprocessor.py
TorchPreprocessor(input_size: tuple[int, ...], module_transform: torch.nn.Module | None = None, module_inverse_transform: torch.nn.Module | None = None)
#
Preprocessor class based on pytorch.
To customize your preprocessor, inherit from this class and implement the transform and inverse_transform methods. Additionally, you can define module_transform and module_inverse_transform in the init method.
Initialize the preprocessor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
|
tuple[int, ...]
|
The dimensions of the data that the preprocessor expects, excluding the batch size.
|
required |
|
Module | None
|
A PyTorch module to preprocess data from the raw input space to the preprocessed space.
If |
None
|
|
Module | None
|
A PyTorch module to reverse the preprocessing, converting data from the preprocessed space
back to the raw input space.
If |
None
|
Methods:
Name | Description |
---|---|
forward |
Transform. |
transform |
Process data: ie take in input a tensor and return the tensor preprocessed. |
inverse_transform |
Reciprocal of preprocess. |
from_exposed |
Unparse the serialized preprocessor to use it on client side. |
Attributes:
Name | Type | Description |
---|---|---|
input_size |
|
|
ward |
|
|
module_transform |
|
|
module_inverse_transform |
|
|
as_exposed |
ExposedTorchPreprocessor
|
Parse the preprocessor to send it to xpdeep server. |
Source code in src/xpdeep/dataset/schema/preprocessor.py
input_size = input_size
#
ward = True
#
module_transform = module_transform
#
module_inverse_transform = module_inverse_transform
#
as_exposed: ExposedTorchPreprocessor
#
Parse the preprocessor to send it to xpdeep server.
forward(inputs: torch.Tensor) -> torch.Tensor
#
transform(inputs: torch.Tensor) -> torch.Tensor
#
Process data: ie take in input a tensor and return the tensor preprocessed.
Source code in src/xpdeep/dataset/schema/preprocessor.py
inverse_transform(output: torch.Tensor) -> torch.Tensor
#
Reciprocal of preprocess.
ie \forall x inverse_transform(transform(x)) = transform(inverse_transform(x)) = x.
Source code in src/xpdeep/dataset/schema/preprocessor.py
from_exposed(exposed_torch_preprocessor: ExposedTorchPreprocessor) -> Self
#
Unparse the serialized preprocessor to use it on client side.